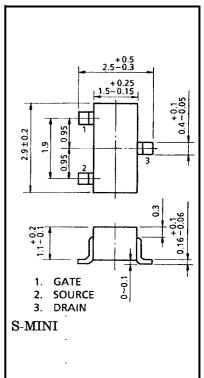
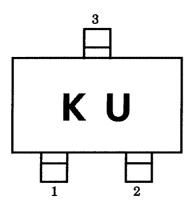
Product specification

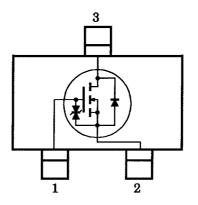

SSM3K02F

Unit: mm

- Small package
- Low on resistance: $R_{on} = 200 \text{ m}\Omega \text{ (max)} (V_{GS} = 4 \text{ V})$
 - $R_{on} = 250 \text{ m}\Omega \text{ (max)} \text{ (VGS} = 2.5 \text{ V)}$
- Low gate threshold voltage: V_{th} = 0.6~1.1 V (V_{DS} = 3 V, I_D = 0.1 mA)


Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-source voltage		V _{DS}	30	V	
Gate-source voltage		V _{GSS}	±10	V	
Drain current	DC	I _D	1.0	A	
	Pulse	I _{DP}	2.0		
Drain power dissipation		PD	200	mW	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	



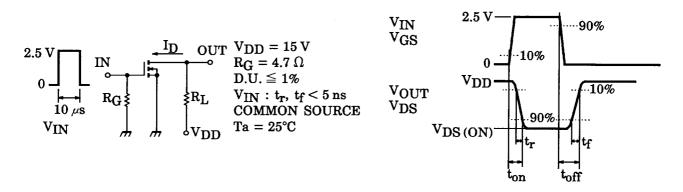
Weight: 0.012 g (typ.)

Marking

Equivalent Circuit

Handling Precaution

When handling individual devices (which are not yet mounted on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.


SSM3K02F

Electrical Characteristics (Ta = 25°C)

Chara	cteristics	Symbol	Test Condition		Min	Тур.	Max	Unit
Gate leakage curr	rent	I _{GSS}	$V_{GS}=\pm 10~V,~V_{DS}=0$		_		±5	μA
Drain-source brea	kdown voltage	V (BR) DSS	$I_{D} = 1 \text{ mA}, V_{GS} = 0$		30			V
Drain cut-off curre	ent	IDSS	$V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0$		_		1	μA
Gate threshold vo	Itage	V _{th}	$V_{DS} = 3 V, I_D = 0.1 mA$		0.6		1.1	V
Forward transfer a	admittance	Y _{fs}	$V_{DS} = 3 V, I_D = 0.5 A$	(Note)	1.5			S
Drain-source ON resistance		R _{DS (ON)}	I _D = 0.5 A, V _{GS} = 4 V	(Note)	_	140	200	mΩ
			I _D = 0.5 A, V _{GS} = 2.5 V	(Note)	_	180	250	
Input capacitance		C _{iss}	$V_{DS} = 10 V, V_{GS} = 0, f = 1 MHz$			115		pF
Reverse transfer capacitance		C _{rss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$			24		pF
Output capacitance		C _{oss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$			60		pF
Switching time	Turn-on time	t _{on}	$ \begin{array}{l} V_{DD} = 15 \; V, \; I_{D} = 0.5 \; A, \\ V_{GS} = 0 {\sim} 2.5 \; V, \; R_{G} = 4.7 \; \Omega \end{array} $		_	52		
	Turn-off time	t _{off}			_	80	—	ns

Note: Pulse test

Switching Time Test Circuit

Precaution

 V_{th} can be expressed as voltage between gate and source when low operating current value is ID = 100 μA for this product. For normal switching operation, V_{GS} (ON) requires higher voltage than V_{th} and V_{GS} (off) requires lower voltage than V_{th} .

(Relationship can be established as follows: V_{GS} (off) < V_{th} < V_{GS} (ON))

Please take this into consideration for using the device.

VGS recommended voltage of 2.5 V or higher to turn on this product.